ORIGINAL ARTICLE Check for updates # A low-permittivity microwave dielectric ceramic $BaZnP_2O_7$ and its performance modification Xiaoqing Chen¹ | Hao Li¹ | Pengcheng Zhang¹ | Houlin Hu¹ | Gongtian Chen² | Gaosheng Li¹ ¹College of Electrical and Information Engineering, Hunan University, Changsha, China ²College of Materials Science and Engineering, Hunan University, Changsha, China #### Correspondence Hao Li, College of Electrical and Information Engineering, Hunan University, Changsha, China. Email: hli@hnu.edu.cn #### **Abstract** Complex pyrophosphates compounds have attracted much attention as promising candidates for substrate applications. In the work, a low-permittivity BaZnP₂O₇ ceramic was synthesized through solid-state reaction. The pure phase BaZnP₂O₇ was crystallized in the triclinic P–1 space group. Excellent microwave dielectric properties of the BaZnP₂O₇ ceramic with $\varepsilon_r = 8.23$, Qf = 56170 GHz, and $\tau_f = -28.7$ ppm/°C were obtained at 870°C for 4 h. The substitution of Mg²⁺ for Zn²⁺ was found to have positive effects on grain morphology and dielectric properties. Optimized performance of $\varepsilon_r = 8.21$, Qf = 84760 GHz, and $\tau_f = -21.9$ ppm/°C was yielded at 900°C for the BaZn_{0.98}Mg_{0.02}P₂O₇ ceramic. Intrinsic dielectric properties of BaZn_{1-x}Mg_xP₂O₇ ceramics were studied via Clausius–Mossotti equation and complex chemical bond theory. ## KEYWORDS BaZnP₂O₇, low-permittivity, microwave dielectric properties # 1 | INTRODUCTION The past few decades have witnessed an ever-growing scholarly interest in microwave dielectric ceramics with the rapid development of telecommunication. Recently, there is a strong ongoing search for dielectric ceramics with a dielectric constant (ε_r) less than 15, a low dielectric loss ($\tan \delta = 1/Q$), and a near-zero temperature coefficient (τ_f) to meet the demands for microwave substrate applications. Although traditional inorganic substrates such as Al_2O_3 possess excellent dielectric properties, the exploration for novel materials with superior dielectric properties and sintering behaviors continues today. Pyrophosphates belong to typical low-permittivity compounds, in which $M_2P_2O_7$ possesses two kinds of structure according to the ionic radius of M that is a divalent cation.⁷ The structure is recognized as thortveitite-type if the M ionic radius is less than 0.97 Å (M = Mn, Mg, Zn), while the structure converts to dichromate-type if the M ionic radius is larger than 0.97 Å (M = Ca, Sr, Ba). The dependence of dielectric properties on the phase composition of $M_2P_2O_7$ (M = Ca, Sr, Ba, Mn, Mg, Zn) was investigated by Bian et al.⁸ and dielectric properties were $\varepsilon_r = 6.1 \sim 8.4$, $Qf = 12300 \sim 53500$ GHz, and $\tau_f = -23 \sim -746$ ppm/°C. Sutapun et al.⁹ studied the substitution effect of Zn^{2+} at the Mn site of $Mn_2P_2O_7$, and found that the dopants of $Zn_2P_2O_7$ were diffused completely into the $Mn_2P_2O_7$ structure, forming solid solutions. In recent years, many compounds with the general formula of M2M1P₂O₇ have been reported with excellent microwave dielectric properties and low sintering temperatures. Complex pyrophosphates compounds M2M1P₂O₇ (M2 = Ca, Sr; M1 = Zn, Cu) were investigated as low temperature cofired ceramic (LTCC) materials due to their intrinsic low sintering temperatures. In the past, the work of BaZnP₂O₇ was mainly focused on the luminescence properties. In 2016, Xie et al. Prepared BaZnP₂O₇ ceramics through solid-state reaction and reported its dielectric properties: $\varepsilon_r = 8.4$, Qf = 27925 GHz, and $\tau_f = -56.7$ ppm/°C. However, there are no reports on the performance modification for $BaZnP_2O_7$ ceramics to date. Considering the little difference of ionic radius and electronegativity between Zn^{2+} (0.68 Å, S=1.65) and Mg^{2+} (0.66 Å, S=1.31), we decided to substitute Mg^{2+} for Zn^{2+} in $BaZnP_2O_7$ ceramics. In the work, we systematically investigated the phase composition, grain morphology, and microwave dielectric properties of $BaZnP_2O_7$ ceramics, and then discussed the influence of Mg^{2+} substitution for Zn^{2+} on the dielectric properties. # 2 | EXPERIMENTAL BaZn_{1-x}Mg_xP₂O₇ (x = 0, 0.01, 0.02, 0.04, 0.06) ceramics were fabricated via solid-state synthesis, adopting reagent-grade BaCO₃ (99.8%), ZnO (\geq 99.0%), Mg(OH)₂•4MgCO₃•5H₂O (\geq 99.0%), and NH₄H₂PO₄ (\geq 99.0%). The powders were mixed by stoichiometry and then ground with ethyl alcohol and zirconia balls for 9 h. The powders, ethanol, and balls were milled at a mass ratio of 1:2:10. In the work, we adopted two kinds of zirconia balls (big balls with 6 mm in diameter and small ones with 3 mm in diameter) at a mass ratio of 1:1. After calcination at 800°C for 4 h, re-milled and then dried powders added with PVA (5 wt%) were pressed into a cylinder with a diameter of 12 mm and a height of 6 mm (pressure: 15 MPa). Eventually, samples were sintered at 830-930°C for 4 h. X-ray powder diffraction (XRD, X'Pert Pro MPD) was performed to determine the phase composition of samples with Cu K α radiation in the range of 10° < 2θ < 120° , with a step size of 0.013° . The grain morphology characteristics were observed employing scanning electron microscopy (SEM, FEI Inspect F). A transmission electron microscope (TEM, FEI Tecnai G2 F20) was measured to obtain selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM). In order to identify the valence states of ions, the X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha) was employed with monochromated Al K α radiation. Hakki–Coleman method was adopted to test ε_r and Qf at about 12 GHz with a network analyzer (HP83752A). Additionally, τ_f was determined by $$\tau_f = \frac{f_{85} - f_{25}}{f_{25}(85 - 25)} \times 10^6 (\text{ppm/}^{\circ} C)$$ (1) where f_{25} and f_{85} were resonant frequencies tested at 25°C and 85°C, respectively. ## 3 | RESULTS AND DISCUSSION BaZnP₂O₇ ceramics were characterized by XRD (Figure 1A), showing that the phase BaZnP₂O₇ was the only crystalline phase. In the range of 830°C to 890°C, diffraction peaks of samples were well matched with the standard pattern of BaZnP₂O₇ (JCPDS#77-0659), which crystallized in the triclinic structure with space group P–1. To clarify the crystal structure, powder diffraction data were refined using GSAS software based on the Rietveld method. The quality of refined patterns was assessed by profile factors (R_p), weighted profile factors (R_{wp}), and goodness of fit values (χ^2), as shown in Table 1. Figure 1B displays the refined pattern of the BaZnP₂O₇ ceramic, using the sample sintered at 850°C as an instance. BaZnP₂O₇ possessed a special three-dimensional structure, as shown in Figure 2. The double-tetrahedral P₂O₇ served FIGURE 1 (A) The XRD patterns of BaZnP₂O₇ ceramics sintered at 830-890°C; (B) The refined pattern of the BaZnP₂O₇ ceramic sintered at 850°C **TABLE 1** Structural parameters and reliability factors of BaZnP₂O₇ ceramics | ST (°C) | 830 | 850 | 870 | 890 | |--------------------------------------|------------|------------|------------|------------| | a (Å) | 5.3118(1) | 5.3123(2) | 5.3131(1) | 5.3166(1) | | b (Å) | 7.3080(2) | 7.3066(3) | 7.3087(2) | 7.3118(2) | | c (Å) | 7.5737(2) | 7.5732(3) | 7.5739(2) | 7.5788(2) | | α (°) | 102.720(2) | 102.722(3) | 102.716(2) | 102.721(2) | | β (°) | 92.125(2) | 92.129(3) | 92.123(2) | 92.123(2) | | γ (°) | 94.066(3) | 94.059(3) | 94.080(2) | 94.077(2) | | $V_{\rm cell} (\mathring{\rm A}^3)$ | 285.64(2) | 285.59(3) | 285.74(2) | 286.24(2) | | R_p (%) | 4.48 | 4.38 | 4.59 | 4.55 | | $R_{wp}\left(\%\right)$ | 5.84 | 5.69 | 6.01 | 5.93 | | χ^2 | 1.389 | 1.341 | 1.485 | 1.496 | Abbreviation: ST: sintering temperature FIGURE 2 The crystal structure of BaZnP₂O₇ FIGURE 3 (A) The HRTEM image and (B) corresponding SAED pattern of the BaZnP₂O₇ ceramic sintered at 870°C along [010] zone axis as a bridge among BaO₉ polyhedrons. Ba and Zn atoms were separately coordinated with nine and five O atoms, forming BaO₉ and ZnO₅ polyhedrons. P atoms showed two different crystallographic sites, that is, P1 and P2. P atoms were tetrahedrally coordinated with oxygen, forming almost regular PO₄ tetrahedrons with P-O bond lengths in the range of 1.492-1.607 Å. P1O₄ and P2O₄ tetrahedrons constituted a double-tetrahedral P₂O₇ via the corner-sharing O atom. We employed TEM analysis to further determine the structure of BaZnP₂O₇ ceramics. Figure 3 shows an HRTEM view and SAED pattern of the BaZnP₂O₇ ceramic sintered at 870°C, which were recorded along [010] zone axis. The HRTEM image showed the interplanar spacings of 4.2 and 3.1 Å, which matched well with the (101) and (102) lattice planes of triclinic structure. The SAED pattern and HRTEM image were the supplements to XRD analysis, which confirmed that BaZnP₂O₇ belonged to the triclinic P-1 space group. The chemical state of $BaZnP_2O_7$ ceramics was identified by XPS analysis. Figure 4A shows the existence of Ba 3d, Zn 2p, Zn LMM, P 2p, O 1s, and C 1s. The XPS peaks were calibrated with reference to C 1s peak of contamination carbon at 284.8 eV. The Ba 3d spectrum exhibited greatly separated spin-orbit $3d_{5/2}$ and $3d_{3/2}$ components (Δ = 15.3 eV) at 779.9 and 795.2 eV, which was indexed to Ba^{2+} . Since the difference of Zn 2p peak positions between Zn^0 and Zn^{2+} was very small, $Zn^{15,16}$ it was difficult to FIGURE 4 XPS spectra of the $BaZnP_2O_7$ ceramic sintered at 870°C with (A) the survey spectrum and high-resolution spectra of (B) Ba 3d, (C) Zn 2p, (D) Zn LMM, and (E) P 2p FIGURE 5 The SEM micrographs of BaZnP₂O₇ ceramics sintered at different temperatures for 4 h: (A) 830°C, (B) 850°C, (C) 870°C, and (D) 890°C differentiate chemical states only with Zn 2p peaks (Figure 4C). Therefore, the Zn LMM Auger spectrum (Figure 4D) was also collected. The chemical state of Zn was assigned to Zn^{2+} due to the bigger chemical shifts of Zn^{2+} observed for Zn LMM compared to Zn^{0} . The P 2p spectrum had closely spaced spin-orbit components ($\Delta = 1.0 \text{ eV}$), which was assigned to P^{5+} . Since zinc was present in the sample, it was reasonable to observe Zn 3 s peak at 140.0 eV. The above analysis verified that the oxidation states of Ba, Zn, and P were +2, +2, and +5. Figure 5 shows the surface SEM micrographs of $BaZnP_2O_7$ ceramics sintered at 830-890°C. With a rise in the sintering temperature, grains gradually grew and pores disappeared. The average grain size of $BaZnP_2O_7$ ceramics sintered at 830°C, 850°C, 870°C, and 890°C was 0.99 μ m, 1.05 μ m, 1.10 μ m, and 1.11 μ m, respectively. A dense and homogeneous morphology with well-packed grains is observed in Figure 5C, corresponding to a low dielectric loss of the sample sintered at 870°C. With a further increase in the sintering temperature, the movement rate of grain boundary was faster than the diffusion rate of pores, which aroused a phenomenon that a few pores were trapped in ceramics at 890°C. Figure 6A exhibits the change in relative density ($\rho_{relative}$) of BaZnP₂O₇ ceramics. Increasing sintering temperatures brought about an increase of $\rho_{relative}$, which reached a maximum value of 96.57% at 870°C. A slight decrease of $\rho_{relative}$ was observed with the further increase in the sintering temperature, which was in agreement with the microstructural observation. The change in ε_r was similar to that in $\rho_{relative}$, which indicated that porosity played a significant part in affecting the dielectric constant. The influence of pores on ε_r was described by spherical pore models as follows ¹⁸: $$\varepsilon_r = \varepsilon_{rc} \left(1 - \frac{3P \left(\varepsilon_{rc} - 1 \right)}{2\varepsilon_{rc} + 1} \right) \tag{2}$$ **FIGURE 6** The changes in (A) $\rho_{relative}$, (B) ε_r , (C) Qf, and (D) τ_f of BaZnP₂O₇ ceramics where ε_r and P are porosity corrected ε_r and fractional porosity, respectively. Pores existed as a constituent ($\varepsilon_r \approx 1$), leading to the decrease in the permittivity of ceramics. Therefore, the highest ε_r of 8.23 was obtained for the sample sintered at 870°C due to the highest densification. Kucheiko et al. 19 reported that the Of value was related to the average grain size. Pores and grain boundaries decreased with the increase in the average grain size, leading to the reduction in defects and the enhancement in Of value. However, abnormal grain growth due to the over-high sintering temperature certainly deteriorated Of value. Generally speaking, Of value is affected by densification, average grain size, and anharmonic vibration. 20 As shown in Figure 6, the influence of densification was nonnegligible. As shown in Figure 6D, the τ_f of BaZnP₂O₇ samples sintered at 830-890°C fluctuated around -28 ppm/°C, showing a weak dependence on the sintering temperature. The phenomenon is common in other microwave dielectric ceramics, such as NaCa₄V₅O₁₇, Li₂AGeO₄ (A = Zn, Mg), ²¹ and $AgCa_2B_2V_3O_{12}$ (B = Mg, Zn). ²² The XRD patterns of $BaZn_{1-x}Mg_xP_2O_7$ (x=0,0.01,0.02,0.04,0.06) samples sintered at optimum sintering temperatures are shown in Figure 7. In the range of $0.01 \le x \le 0.06$, the structure was indexed as triclinic (JCPDS#77-0659) with P-1 space group, suggesting that single-phase solid solutions were formed for all the samples. Figure 8 exhibits SEM micrographs of $BaZn_{1-x}Mg_xP_2O_7$ (x=0.01,0.02,0.04,0.06) ceramics, in which the compound surfaces were greatly dense. Homogeneous microstructures with few pores were observed for all the samples. For pure-phase samples with high relative densities (>96%), the impact of extrinsic factors can be ignored. Therefore, the influence of dielectric polarizability on ε_r was discussed via Clausius–Mossotti equation.²³ FIGURE 7 The XRD patterns of $BaZn_{1-x}Mg_xP_2O_7$ (x = 0, 0.01, 0.02, 0.04, 0.06) ceramics sintered at optimum temperatures **FIGURE 8** The SEM micrographs of $BaZn_{1-x}Mg_xP_2O_7$ ceramics sintered at optimum temperatures: (A) x = 0.01, (B) x = 0.02, (C) x = 0.04, and (D) x = 0.06 | | | Observed | | | | | |-------------------------------|-------------------|--------------|------------|---|----------------|--------------| | Compounds | $lpha_{\it theo}$ | ϵ_r | V_{cell} | Z | α_{obs} | $\Delta(\%)$ | | $BaZnP_2O_7$ | 24.9500 | 8.23 | 286.129 | 2 | 24.1383 | 3.36 | | $BaZn_{0.99} Mg_{0.01}P_2O_7$ | 24.9428 | 8.22 | 285.745 | 2 | 24.0961 | 3.51 | | $BaZn_{0.98} Mg_{0.02}P_2O_7$ | 24.9356 | 8.21 | 285.624 | 2 | 24.0761 | 3.57 | | $BaZn_{0.96} Mg_{0.04}P_2O_7$ | 24.9212 | 8.19 | 284.637 | 2 | 23.9733 | 3.95 | | $BaZn_{0.94} Mg_{0.06}P_2O_7$ | 24.9068 | 8.15 | 284.518 | 2 | 23.9239 | 4.11 | **TABLE 2** Comparisons between α_{theo} and α_{obs} of BaZn_{1-x}Mg_xP₂O₇ ceramics $$\alpha_{obs} = \frac{3V_m(\varepsilon_r - 1)}{4\pi(\varepsilon_r + 2)} \tag{3}$$ where ε_r and V_m are measured permittivity and molar volume (V_{cell}/Z) . On the basis of additive rule, ²⁴ the theoretical dielectric polarizability (α_{theo}) of BaZn_{1-x}Mg_xP₂O₇ samples obeys: $$\alpha_{theo} = \alpha(Ba^{2+}) + (1-x)\alpha(Zn^{2+}) + x\alpha(Mg^{2+}) + 2\alpha(P^{5+}) + 7\alpha(O^{2-})$$ (4) where $\alpha(\mathrm{Ba^{2+}}) = 6.4 \ \mathrm{\mathring{A}^3}, \ \alpha(\mathrm{Zn^{2+}}) = 2.04 \ \mathrm{\mathring{A}^3}, \ \alpha(\mathrm{Mg^{2+}}) = 1.32 \ \mathrm{\mathring{A}^3}, \ \alpha(\mathrm{P^{5+}}) = 1.22 \ \mathrm{\mathring{A}^3}, \ \mathrm{and} \ \alpha(\mathrm{O^{2-}}) = 2.01 \ \mathrm{\mathring{A}^3}, \ \mathrm{respectively.}^{23}$ Furthermore, the deviation (Δ) between α_{theo} and α_{obs} of $\mathrm{BaZn_{1-x}Mg_xP_2O_7}$ was defined as follows: $$\Delta = \left| \frac{\alpha_{theo} - \alpha_{obs}}{\alpha_{obs}} \times 100\% \right| \tag{5}$$ As shown in Table 2, the change in α_{theo} was consistent with that in α_{obs} , which suggested that the decline in ε_r was attributed to the lower ionic polarizability of Mg^{2+} , in comparison with Zn^{2+} . Furthermore, the calculated deviations (Δ) were so small (Table 2) that results were reliable. The intrinsic dielectric properties of $BaZn_{1-x}Mg_xP_2O_7$ ceramics were investigated by the complex chemical bond theory. For a particular crystal structure, the unique bond lengths and bond angles lead to a variety of chemical and physical properties. After the classification of the A-O chemical bond (A = Ba, Zn, and P), $BaZnP_2O_7$ was decomposed into the following bond formula 25 : $\begin{array}{l} BaZnP_2O_7 = Ba_{1/18}O1(1)_{1/6} + Ba_{1/18}O1(2)_{1/6} + Ba_{1/9}O2(1)_{1/4} + Ba_{1/9}O2(2)_{1/4} + Ba_{1/9}O3_{1/4} + Ba_{1/9}O5(1)_{1/4} + Ba_{1/9}O5(2)_{1/4} + Ba_{1/9}O5(3)_{1/4} + Ba_{1/9}O6_{1/3} + Ba_{1/18}O7(1)_{1/4} + Ba_{1/18}O7(2)_{1/4} + Zn_{1/5}O1_{1/3} + Zn_{1/5}O2_{1/4} + Zn_{1/5}O3(1)_{1/4} + Zn_{1/5}O3(2)_{1/4} + Zn_{1/5}O6_{1/3} + P1_{1/4}O1_{1/3} + P1_{1/4}O2_{1/4} + P1_{1/4}O4_{1/2} + P1_{1/4}O5_{1/4} + P2_{1/4}O3_{1/4} + P2_{1/4}O4_{1/2} + P2_{1/4}O6_{1/3} + P2_{1/4}O7_{1/2}. \end{array}$ Lattice energy stands for the combination ability of cations and anions of complex crystals, in which larger lattice energy corresponds to the stronger binding ability. Further research on lattice energy is not only helpful to explore the crystal structure, but also meaningful to investigate the intrinsic dielectric loss. The total lattice energy (U_{total}) consists of the lattice energy of each chemical bond μ , divided into the covalent part (U_{bc}^{μ}) and ionic part (U_{bi}^{μ}) , which can be estimated as follows ²⁷: $$U_{total} = \sum_{\mu} (U_{bc}^{\mu} + U_{bi}^{\mu}) \tag{6}$$ $$U_{bc}^{\mu} = 2100m \frac{\left(Z_{+}^{\mu}\right)^{1.64}}{\left(d^{\mu}\right)^{0.75}} f_{c}^{\mu} \tag{7}$$ $$U_{bi}^{\mu} = 1270 \frac{(m+n)Z_{+}^{\mu}Z_{-}^{\mu}}{d^{\mu}} \left(1 - \frac{0.4}{d^{\mu}}\right) f_{i}^{\mu}$$ (8) where Z_{+}^{μ} and Z_{-}^{μ} are the valence states of cations and anions in each bond μ , respectively. m and n are obtained by the bond formula. f_{i}^{μ} , f_{c}^{μ} and d^{μ} are ionicity, covalency, and bond length. As shown in Figure 9A, measured Qf values went through an increment from 56170 GHz to 84760 GHz and then followed a decline, similar to the changing trend of the total lattice energy. According to XRD and SEM analyses, all the ceramics were densified and remained pure phase. Thus, the Qf value was mainly affected by the intrinsic loss that was related to anharmonic vibration. Larger lattice energy led to the weaker lattice vibration, corresponding to a low intrinsic loss. To evaluate the temperature coefficient τ_f , the structure stability of ceramics was considered. Bond energy E is a dominant index that reflects the stability of structure. ²⁸ $$E = \sum_{\mu} (t_c E_c^{\mu} + t_i E_i^{\mu}) \tag{9}$$ $$E_c^{\mu} = \frac{(r_{cA} + r_{cB})}{d^{\mu}} (E_{A-A} E_{B-B})^{0.5}$$ (10) $$E_i^{\mu} = \frac{33200}{d^{\mu}} \tag{11}$$ where t_c and t_i are the covalent and ionic coefficient, related to electronegativity. $r_{\rm cA}$ and $r_{\rm cB}$ are the covalent radii. Here, $E_{\rm Ba\text{-}Ba}=44$ kJ/mol, $E_{\rm Zn\text{-}Zn}=22$ kJ/mol, $E_{\rm Mg\text{-}Mg}=11.3$ kJ/mol, $E_{\rm P.P}=220$ kJ/mol, and $E_{\rm O\text{-}O}=497.38$ kJ/mol. 29,30 The variations in the τ_f value and total bond energy are exhibited in Figure 9B. A similar change in the two parameters suggested that a crystal with a higher E value was more stable, corresponding to a lower $|\tau_f|$ value. Table 3 lists the performance of reported low-permittivity ceramics. $^{8,13,31-38}$ In comparison with the literature, 13 we obtained BaZnP₂O₇ and BaZn_{0.98}Mg_{0.02}P₂O₇ ceramics with competitive Qf values. However, the negative τ_f value limited the commercial application of the BaZn_{0.98}Mg_{0.02}P₂O₇ ceramic. TiO₂ and CaTiO₃ are often used as a τ_f compensator because their τ_f values are +450 ppm/°C 39 and +859 ppm/°C, 40 respectively. We propose to add TiO₂/CaTiO₃ in the BaZn_{0.98}Mg_{0.02}P₂O₇ ceramic to achieve a near zero τ_f value in future work. Since the BaZn_{0.98}Mg_{0.02}P₂O₇ ceramic possessed a low sintering temperature (900°C) which made it possible for LTCC applications, ^{41,42} it was necessary to study whether the BaZn_{0.98}Mg_{0.02}P₂O₇ ceramic was chemically compatible with Ag electrode. XRD analysis confirmed that no new crystalline phases were formed for the BaZn_{0.98} Mg_{0.02}P₂O₇ ceramic co-fired with Ag slurry, as shown in Figure 10A. The cross-sectional backscattered electron image and EDS linear scanning results are displayed in Figure 10B. Obviously, the boundary between Ag and ceramic was clearly visible and Ag presented almost no diffusion across the interface. The superior dielectric properties, a low sintering temperature, and good compatibility with Ag enabled **FIGURE 9** (A) The variation of Qf and total lattice energy with x from 0 to 0.06; (B) The variation of τ_f and total bond energy with x from 0 to 0.06 | Composition | ST (°C) | ε_r | Qf (GHz) | $\tau_f(\text{ppm/}^{\circ}\text{C})$ | Reference | |--------------------------------------------------|---------|-----------------|----------|---------------------------------------|-----------| | $Mn_2P_2O_7$ | 1100 | 7.34 | 23 850 | -95.8 | 8 | | CaMgSi ₂ O ₆ | 1290 | 7.46 | 59 640 | -46 | 31 | | Nd ₂ SiO ₅ | 1500 | 7.94 | 38 800 | -53 | 32 | | YPO_4 | 1600 | 8.0 | 67 930 | -35.3 | 33 | | $SrWO_4$ | 1150 | 8.1 | 56 000 | -55 | 34 | | BaZnP ₂ O ₇ | 870 | 8.23 | 56 170 | -28.7 | This work | | $BaMg_{0.98}Zn_{0.02}P_2O_7$ | 900 | 8.21 | 84 760 | -21.9 | This work | | BaZnP ₂ O ₇ | 875 | 8.4 | 27 925 | -56.7 | 13 | | $BaCu_{1.85}Co_{0.15}Si_2O_7$ | 1000 | 8.45 | 58 960 | -34.4 | 35 | | $Ca_5 Mg_4 (VO_4)_6$ | 800 | 9.2 | 53 300 | -50 | 36 | | $Li_3AlMo_3O_{12}$ | 570 | 9.5 | 50 000 | -73 | 37 | | $Mg_{0.94}Na_{0.12}WO_4$ | 875 | 10.47 | 45 870 | -69 | 38 | | $\text{Li}_2\text{Zn}_2\text{Mo}_3\text{O}_{12}$ | 630 | 11.1 | 70 000 | -90 | 37 | **TABLE 3** Microwave dielectric properties of some low-permittivity ceramics Abbreviation: ST: sintering temperature **FIGURE 10** (A) The XRD pattern of the $BaZn_{0.98}Mg_{0.02}P_2O_7$ ceramic brushed with Ag slurry on the surface; (B) The cross-sectional backscattered electron image and EDS linear scanning results of the $BaZn_{0.98}Mg_{0.02}P_2O_7$ ceramic brushed with Ag slurry on the surface. The sample was co-fired at 900°C the $BaZn_{0.98}Mg_{0.02}P_2O_7$ ceramic to be a promising candidate for LTCC applications. ## 4 | CONCLUSIONS BaZnP₂O₇ ceramics were prepared via solid-state synthesis. XRD and TEM results suggested that BaZnP₂O₇ belonged to the triclinic P-1 space group. The BaZnP₂O₇ ceramic sintered at 870°C for 4 h possessed a low ε_r of 8.23, a high Qf of 56170 GHz (~12 GHz), and a τ_f of -28.7 ppm/°C. It was found that dielectric constant and loss of BaZnP₂O₇ ceramics sintered at different sintering temperatures were highly dependent on relative density. Besides, we studied the substitution effect of Mg^{2+} at Zn site, and found that grain morphology and dielectric properties were greatly optimized. The optimum performance of $\varepsilon_r=8.21,\ Qf=84760\ \mathrm{GHz}$ and $\tau_f=-21.9\ \mathrm{ppm/^\circ C}$ was obtained for the $\mathrm{BaZn_{0.98}Mg_{0.02}P_2O_7}$ ceramic sintered at $900^{\circ}\mathrm{C}$. Clausius–Mossotti equation and complex chemical bond theory provided a deep insight into the structure–property relationship in $\mathrm{BaZn_{1-x}Mg_xP_2O_7}$ ceramics. ### **ORCID** Hao Li https://orcid.org/0000-0002-9298-7898 #### REFERENCES - Dai QL, Zuo RZ. A novel ultralow-loss Sr₂CeO₄ microwave dielectric ceramic and its property modification. J Eur Ceram Soc. 2019;39:1132–6. - Zhou D, Li J, Pang LX, Wang DW, Reaney IM. Novel water insoluble (Na_xAg_{2-x})MoO₄ (0<x<2) microwave dielectric ceramics with spinel structure sintered at 410 degrees. J Mater Chem C. 2017:5:6086–91. - 3. Wang D, Li L, Jiang J, Lu Z, Wang GE, Song K, et al. Cold sintering of microwave dielectric ceramics and devices. J Mater Res. 2021;36:333–49. - Zhou D, Li J, Pang LX, Chen GH, Qi ZM, Wang DW, et al. Crystal structure, infrared spectra, and microwave dielectric properties of temperature-stable zircon-type (Y, Bi)V_O4 solid solution ceramics. ACS Omega. 2016;1:963–70. - Song XQ, Lu WZ, Wang XC, Wang XH, Fan GF, Muhammad R, et al. Sintering behaviour and microwave dielectric properties of BaAl_{2-2x}(ZnSi)_xSi₂O₈ ceramics. J Eur Ceram Soc. 2018;38:1529-34. - Yin CZ, Li CC, Yang GJ, Fang L, Yuan YH, Shu LL, et al. NaCa₄V₅O₁₇: a low-firing microwave dielectric ceramic with low permittivity and chemical compatibility with silver for LTCC applications. J Eur Ceram Soc. 2020;40:386–90. - Brown ID, Calvo C. The crystal chemistry of large cation dichromates, pyrophosphates, and related compounds with stoichiometry X₂Y₂O₇. J Solid State Chem. 1970;1:173–9. - 8. Bian JJ, Kim DW, Hong KS. Microwave dielectric properties of $A_2P_2O_7$ (A = Ca, Sr, Ba; Mg, Zn, Mn). Jpn J Appl Phys. 2004;43:3521–5. - Sutapun M, Muanghlua R, Niemcharoen S, Vittayakorn WC, Seeharaj P, Vittayakorn N. Synthesis, characterization and dielectric properties of Mn_(2-x)Zn_xP₂O₇ ceramics. Adv Mater Res. 2013;802:12–6. - Bian JJ, Kim DW, Hong KS. Glass-free LTCC microwave dielectric ceramics. Mater Res Bull. 2005;40:2120–9. - 11. Yang ZP, Yang GW, Wang SL, Tian J, Li PL, Li X. Luminescence and energy transfer of Eu²⁺, Mn²⁺ in BaZnP₂O₇. Acta Phys Sin. 2008;57:581–5. - 12. Yang ZP, Yang GW, Wang SL, Tian J, Li PL, Li X. Preparation and luminescent properties of BaZnP₂O₇: Eu³⁺ salmon pink-emitting phosphor. Chem J Chin Univ. 2007;28:1631–3. - 13. Xie HD, Chen C, Su BB, Xi HH. Microwave dielectric properties of low ε_r BaZnP₂O₇ ceramic. Mater Lett. 2016;166:167–70. - 14. Verhoeven JAT, Doveren HV. XPS studies on Ba, BaO and the oxidation of Ba. Appl Surf Sci. 1980;5:361–73. - Wöll C. The chemistry and physics of zinc oxide surfaces. Prog Surf Sci. 2007;82:55–120. - Biesinger MC, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci. 2010;257:887–98. - Baggetto L, Dudney NJ, Veith GM. Surface chemistry of metal oxide coated lithium manganese nickel oxide thin film cathodes studied by XPS. Electrochim Acta. 2013;90:135–47. - Penn SJ, Alford NM, Templeton A, Wang X, Xu M, Reece M, et al. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J Am Ceram Soc. 1997;80:1885–8. - Kucheiko S, Choi JW, Kim HJ, Jung HJ. Microwave dielectric properties of CaTiO₃-Ca(Al_{1/2}Ta_{1/2})O₃. J Am Ceram Soc. 1996:79:2739–43. - Chen XQ, Li H, Zhang PC, Hu HL, Tao Y, Li GS. SrZnV₂O₇: a low-firing microwave dielectric ceramic with high quality factor. J Am Ceram Soc. 2021;00:1–10. - Li CC, Xiang HC, Xu MY, Tang Y, Fang L. Li₂AGeO₄ (A = Zn, Mg): two novel low-permittivity microwave dielectric ceramics with olivine structure. J Eur Ceram Soc. 2018;38:1524–8. - 22. Chen JQ, Tang Y, Xiang HC, Fang L, Porwal H, Li CC. Microwave dielectric properties and infrared reflectivity spectra analysis of two novel low-firing $AgCa_2B_2V_3O_{12}$ (B = Mg, Zn) ceramics with garnet structure. J Eur Ceram Soc. 2018;38:4670–6. - Shannon RD. Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys. 1993;73:348–66. - Shannon RD, Rossman GR. Dielectric constants of silicate garnets and the oxide additivity rule. Am Mineral. 1992;77:94–100. - Wu ZJ, Meng QB, Zhang SY. Semiempirical study on the valences of Cu and bond covalency in Y_{1-x}Ca_xBa₂Cu₃O_{6+y}. Phys Rev B. 1998;58:958–62. - 26. Zhang P, Zhao YG, Wu HT. Bond ionicity, lattice energy, bond energy and microwave dielectric properties of $ZnZr(Nb_{1-x}A_x)_2O_8$ (A = Ta, Sb) ceramics. Dalton Trans. 2015;44:16684–93. - Yang HC, Zhang SR, Yang HY, Yuan Y, Li EZ. Vibrational spectroscopic and crystal chemical analyses of double perovskite Y₂MgTiO₆ microwave dielectric ceramics. J Am Ceram Soc. 2020;103:1121–30. - Zhao YG, Zhang P. Influence of Ta substitution for Nb in Zn₃Nb₂O₈ and the impact on the crystal structure and microwave dielectric properties. Dalton Trans. 2016;45:11807–16. - Kildahl NK. Bond energy data summarized. J Chem Educ. 1995;72:423–4. - Luo YR. Comprehensive handbook of chemical bond energies. Boca Raton, FL: CRC Press. 2007. p. 255–1484. - Sun HP, Zhang QL, Yang H, Zou JL. (Ca_{1-x}Mg_x)SiO₃: a low-permittivity microwave dielectric ceramic system. Mater Sci Eng B. 2007;138:46–50. - 32. Jiang C, Wu SP, Ma Q, Mei YX. Synthesis and microwave dielectric properties of Nd₂SiO₅ ceramics. J Alloy Compd. 2012;544:141–4. - 33. Cho IS, Choi GK, An JS, Kim JR, Hong KS. Sintering, microstructure and microwave dielectric properties of rare earth orthophosphates, RePO₄ (Re = La, Ce, Nd, Sm, Tb, Dy, Y, Yb). Mater Res Bull. 2009;44:173–8. - Yoon SH, Kim DW, Cho SY, Hong KS. Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J Eur Ceram Soc. 2006;26:2051–4. - 35. Song XQ, Lu WZ, Lou YH, Chen T, Ta SW, Fu ZX, et al. Synthesis, lattice energy and microwave dielectric properties of BaCu_{2x}Co_xSi₂O₇ ceramics. J Eur Ceram Soc. 2020;40:3035–41. - Yao GG, Liu P, Zhang HW. Novel Series of Low-Firing Microwave Dielectric Ceramics: Ca₅A₄(VO₄)₆ (A²⁺ = Mg, Zn). J Am Ceram Soc. 2013;96:1691–3. - 37. Zhou DI, Randall CA, Pang L-X, Wang H, Wu X-G, Guo J, et al. Microwave dielectric properties of $\text{Li}_2(\text{M}^{2+})_2\text{Mo}_3\text{O}_{12}$ and $\text{Li}_3(\text{M}^{3+})\text{Mo}_3\text{O}_{12}$ (M = Zn, Ca, Al, and In) lyonsite-related-type ceramics with ultra-low sintering temperatures. J Am Ceram Soc. 2011;94:802–5. - 38. Zhang Q, Tang XL, Li YX, Jing YL, Su H. Influence of substituting Na⁺ for Mg²⁺ on the crystal structure and microwave - dielectric properties of $\rm Mg_{1\text{--}x}Na_{2x}WO_4$ ceramics. J Eur Ceram Soc. 2020;40:4503–8. - 39. Guo YP, Ohsato H, Kakimoto KI. Characterization and dielectric behavior of willemite and TiO₂-doped willemite ceramics at millimeter-wave frequency. J Eur Ceram Soc. 2006;26:1827–30. - Subramanian V, Murthy VRK, Viswanathnan B. Microwave dielectric properties of certain simple alkaline earth perovskite compounds as a function of tolerance factor. Jpn J Appl.Phys. 1997;36:194–7. - 41. Guo HH, Fu MS, Zhou D, Du C, Wang PJ, Pang LX, et al. Design of a high-efficiency and -gain antenna using novel low-loss, temperature-stable Li₂Ti_{1-x}(Cu_{1/3}Nb_{2/3})_xO₃ microwave dielectric ceramics. ACS Appl. Mater Interfaces. 2021;13:912–23. - 42. Guo HH, Zhou D, Du C, Wang PJ, Liu WF, Pang LX, et al. Temperature stable Li₂Ti_{0.75}(Mg_{1/3}Nb_{2/3})_{0.25}O₃-based microwave dielectric ceramics with low sintering temperature and ultra-low dielectric loss for dielectric resonator antenna applications. J Mater Chem C. 2020:8:4690–700. How to cite this article: Chen X, Li H, Zhang P, Hu H, Chen G, Li G. A low-permittivity microwave dielectric ceramic BaZnP₂O₇ and its performance modification. *J Am Ceram Soc.* 2021;00:1–10. https://doi.org/10.1111/jace.17839